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ABSTRACT

Rank histograms are a commonly used tool for evaluating an ensemble forecasting system’s performance.
Because the sample size is finite, the rank histogram is subject to statistical fluctuations, so a goodness-of-fit
(GOF) test is employed to determine if the rank histogram is uniform to within some statistical certainty.
Most often, the �2 test is used to test whether the rank histogram is indistinguishable from a discrete uniform
distribution. However, the �2 test is insensitive to order and so suffers from troubling deficiencies that may
render it unsuitable for rank histogram evaluation. As shown by examples in this paper, more powerful
tests, suitable for small sample sizes, and very sensitive to the particular deficiencies that appear in rank
histograms are available from the order-dependent Cramér–von Mises family of statistics, in particular, the
Watson and Anderson–Darling statistics.

1. Introduction

Rank histograms are used extensively to evaluate en-
semble forecast system performance (e.g., Hamill and
Colucci 1997, 1998; Hou et al. 2001; Stensrud and Yus-
souf 2003). Rank histograms were introduced into the
climate field by Anderson (1996), and Anderson and
Stern (1996) used the Kolmogorov–Smirnov test along
with the Anderson–Darling test for comparing samples
in seasonal simulation cases. Hamill (2001) shows how
to appropriately use rank histograms for evaluating en-
semble forecasts. Once biases in individual members
are removed and observational error is accounted for
(Hamill 2001), the ideal ensemble produces flat, or uni-
form, rank histograms. Certain deviations from the uni-
form distribution are bellwether indicators that the en-
semble forecasting system is deficient. Depending on
the nature of these deviations, the nature of the defi-
ciency may be better defined. For example, a U-shaped
distribution indicates the ensemble is underdispersive,
a peaked distribution suggests that the ensemble is

overdispersive, and a sloped rank histogram indicates
that the ensemble remains biased in some way.

Due to random variations, even ideal ensembles will
not produce perfectly uniform rank histograms. Hence,
one wishes to test the assumption that, within sampling
error, the rank histogram is derived from a discrete
uniform distribution. Such tests are derived from the
general family of goodness-of-fit (GOF) tests, which
test the null hypothesis, H0: the rank histogram is in-
distinguishable from a discrete uniform distribution. A
common test for evaluating whether the resulting rank
histograms come from a discrete uniform distribution is
the �2 test. But the �2 test is far from ideal and lacks
power for small sample sizes. More powerful tests come
from the Cramér–von Mises (CvM) family of statistics,
specifically the Watson test and the Anderson–Darling
test, which are described in section 2. Section 3 dis-
cusses the results of applying the different tests to both
large and small datasets generated by sampling at ran-
dom from a uniform distribution. Section 4 provides
conclusions and recommendations.

2. GOF tests

The most common GOF test is the �2 test. This is a
natural test for rank histograms, which represent data
binned by rank. The �2 test is defined as follows by the
test statistic, T:

* Additional affiliation: NOAA/National Severe Storms Labo-
ratory, Norman, Oklahoma.

Corresponding author address: Dr. Kimberly L. Elmore, NSSL,
1313 Halley Circle, Norman, OK 73069.
E-mail: kim.elmore@noaa.gov

OCTOBER 2005 E L M O R E 789

© 2005 American Meteorological Society



T � �
i�1

k

�Oi � Fi�
2�Fi, �1�

where Oi is the observed frequency in bin i, and Fi is the
expected frequency in bin i under the null distribution
with k cells. The T statistic for the null distribution is
approximately distributed as �2 with k � 1 degrees of
freedom.

Sample size is always an issue with GOF tests. In
practice, GOF tests have limited value for both very
large, and very small, sample sizes, though what consti-
tutes “very large” and “very small” is not usually clear
and differs from test to test. If the sample size is large
enough, almost any GOF test will reject the null hy-
pothesis because real data are never distributed accord-
ing to any theoretical distribution (Millard 2002). As
the sample size decreases, the power, or ability to de-
tect a difference between the sample distribution and
the hypothesized or null distribution (uniform, in this
case), of any test suffers, though certain tests are more
sensitive than others against particular alternative hy-
potheses for any given sample size.

For the �2 test, the conservatively defined required
sample size is that which would provide an expected
count of at least 5 for each bin. Thus, for a 15-member
ensemble, the resulting rank histogram has 16 bins and
90 cases are required. However, the �2 approximation
for the T statistic remains valid for surprisingly small
samples. If N is the number of samples, c is the number
of bins, and Ei is the expected frequency in bin i under
the null hypothesis, the T statistic is still well approxi-
mated by the �2 distribution with c � 1 degrees of
freedom if N � 10, c � 3, N2/c � 10, and Ei � 0.25,
which means that for a 15-member ensemble the mini-
mum number of cases must be no less than 13. Conover
(1999) gives a good treatment of how to compute the
required sample size for a �2 test.

Other useful GOF tests exist. A notable example is
the Cramér–von Mises (CvM) family of test, which has
forms for the discrete uniform distribution (Chou-
lakian, et al., 1994). This family consists of the Cramér–
von Mises (Cramér 1928; von Mises 1931; Smirnov
1936), the Watson (Watson 1961), and the Anderson–
Darling (Anderson and Darling 1952) tests. In general,
the CvM family of GOF tests has more power than does
the �2 test for small sample sizes. Unlike the �2 test, the
CvM test statistics are nonparametric. The CvM pro-
vides nearly identical results as the Kolmogorov–
Smirnov (KS) test, though some find its formulation
more appealing because the CvM tests use an inte-
grated departure of the empirical distribution function
(EDF) from the null distribution, instead of the largest
departure (Conover 1999).

Consider a discrete distribution with k cells with
probability pi of an observation landing in any cell. Let
oi be the observed number of counts in bin i, and let,
Npi � ei be the expected number of counts in bin i
under the null distribution. Then, let Sj � �j

i�1oi, and Tj

� �j
i�1ei. Thus, Sj/N and Hj � Tj/N correspond to the

EDF FN(x). Finally, let Zj � Sj – Tj, j � 1, 2, . . . , k.
Then the discrete form of the CvM statistic is given by

W2 � N�1�
i�1

k

Zj
2pj, �2�

the discrete form of the Watson statistic is given by

U2 � N�1�
i�1

k

�Zj � Z�2pj, �3�

and the discrete form of the Anderson–Darling statistic
is given by

A2 � N�1�
j�1

k

Zj
2pj ��Hj�1 � Hj��, �4�

where Z � �k
j�1Zjpj.

By definition, Zk � 0, so the last term in W2 � 0, and
the last term in A2 � 0/0, which is set to 0. An alterna-
tive notation is to extend the index over which the sums
operate to only k � 1 in (2) and (4) (Choulakian et al.
1994).

Because the CvM family uses an integrated depar-
ture from the EDF, it is order dependent, which means
the way the bins are indexed affects the value of the
computed statistic. For example, the discrete CvM test
statistic has the following form: W2 	 (O1 � F1)2 
 (O1


 O2 � F1 
 F2)2 
 (O1 
 O2 
 O3 � F1 
 F2 
 F3)2


 . . . , and so the order in which the binned values
appear affects the statistic’s value. This is also true for
the Anderson–Darling statistic. This is only partially
true for the Watson statistic, which has a circular de-
pendence. The Watson statistic differs from the other
two in that it is invariant with regard to the “starting”
cell. Regardless of the start index in (3), as long as all
indices are addressed in order thereafter, the Watson
statistic is invariant for any given dataset. Hence, the
Watson statistic is particularly useful for testing the uni-
formity of counts around a circle (Choulakian et al.
1994), such as calendar months or wind direction. All
three, however, apply to linear data. The distribution
theory, and so methods for constructing p values for the
CvM, Watson, and Anderson–Darling statistics, are all
given in Choulakian et al. (1994) and will not be elabo-
rated upon here.

In contrast, the �2 test is insensitive to the nature of
the departure from the null distribution because it uses
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only the sum of the individual deviations at each bin
over all bins. Hence, the �2 test cannot distinguish be-
tween noisy departures from the null distribution and
U-shaped, peaked, or sloped departures, which are or-
dered departures. The CvM family is relatively insen-
sitive to random departures but more sensitive to or-
dered departures from the null distribution, and retains
more power against these departures than does the �2

test. This can lead to profound differences between
GOF test results based on the �2 test and results based
on the CvM statistics. Table 1 shows critical values for
the various significance levels for the three CvM statis-
tics (from Choulakian et al. 1994).

3. Examples

Differences between the �2 and CvM test behavior
are illustrated using a Monte Carlo simulation that
draws random samples from a uniform distribution. As-
sume an ensemble forecasting system with 15 members,
which yields a rank histogram containing 16 bins. De-
fine a small-sample rank histogram as consisting of 60
cases. Thus, for the small-sample simulation, each of

1000 Monte Carlo trials draws 60 numbers uniformly
distributed between 1 and 16 (Fig. 1). Define a large-
sample rank histogram as consisting of 540 cases. So,
the large-sample Monte Carlo simulation uses 1000 sets
of 540 numbers uniformly distributed between 1 and 16
(Fig. 2). In the small-sample case, the expected number
of counts, Ei, in each cell is 3.75, large enough for both
the �2 test and the CvM family of tests to be valid. For
the large sample, Ei � 33.75. Each sample is then re-
ordered pathologically to produce a U-shaped, a
peaked-shaped, and a sloped bias trend. Hence, each
sample results in four possible distributions: random, U
shaped, peaked, and sloped. In each case, the �2 test p
value remains invariant, but the CvM tests vary widely
depending on the nature of the reordering.

For a test at p � 0.05, the expectation is that close to
5% of the samples will result in a p value less than 0.05
for all of these tests simply by random chance before
the samples are reordered. By definition, the �2 test p
value is independent of order. However, the CvM fam-
ily yields different p values, depending on how the data
are ordered. Table 2 shows the proportion of cases that

TABLE 1. Significant values for Cramér–von Mises statistics for tests of the discrete uniform distribution with k cells, � � upper-tail
significance test.

Cramér–von Mises statistic, W2

k � � 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001
3 0.1980 0.282 0.351 0.472 0.603 0.783 0.922 1.215
4 0.205 0.284 0.351 0.470 0.595 0.767 0.899 1.213
5 0.207 0.284 0.350 0.467 0.590 0.750 0.888 1.204
6 0.208 0.284 0.349 0.465 0.587 0.754 0.883 1.188
8 0.209 0.284 0.348 0.464 0.584 0.749 0.877 1.179

10 0.209 0.284 0.348 0.463 0.583 0.748 0.874 1.175
20 0.209 0.284 0.347 0.462 0.581 0.743 0.871 1.170
40 0.209 0.284 0.347 0.461 0.581 0.744 0.870 1.168
� 0.209 0.284 0.347 0.461 0.581 0.743 0.869 1.167

Watson statistic, U2

k � � 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001
3 0.103 0.141 0.171 0.222 0.273 0.341 0.395 0.512
4 0.106 0.139 0.165 0.209 0.252 0.309 0.351 0.453
5 0.107 0.137 0.161 0.201 0.241 0.294 0.335 0.427
6 0.107 0.136 0.158 0.197 0.235 0.286 0.325 0.414
8 0.106 0.134 0.156 0.193 0.230 0.278 0.315 0.401

10 0.106 0.133 0.154 0.191 0.227 0.275 0.311 0.395
20 0.105 0.132 0.152 0.188 0.223 0.270 0.305 0.388
40 0.105 0.131 0.152 0.187 0.222 0.269 0.304 0.387
� 0.105 0.131 0.152 0.187 0.222 0.268 0.304 0.385

Anderson–Darling statistic, A2

k � � 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001
3 0.892 1.267 1.580 2.125 2.714 3.52 4.15 5.47
4 0.989 1.363 1.675 2.235 2.821 3.63 4.24 5.71
5 1.043 1.417 1.733 2.289 2.874 3.68 4.28 5.77
6 1.079 1.452 1.763 2.324 2.909 3.72 4.33 5.80
8 1.122 1.495 1.807 2.367 2.952 3.72 4.37 5.84

10 1.147 1.521 1.832 2.392 2.977 3.78 4.40 5.88
� 1.248 1.621 1.933 2.492 3.077 3.88 4.50 5.97
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are associated with p values � 0.05 for each ordering
for the small sample size, while Table 3 shows the same
results for the large sample size (boldface values are
associated with the most sensitive tests).

Clearly, for both sample sizes, the expectation for the
random rank histograms is met by all tests. However,
for the pathologically reordered rank histograms, the
statistics show marked differences. While the �2 statistic
is unaffected, the Watson statistic is clearly very sensi-
tive to U-shaped and peaked rank histograms (yielding
identical values for both due to circular symmetry),
while both the CvM and Anderson–Darling tests are
most sensitive to the bias slope rank histograms. These
results hold for both the small and large samples.

More insight may be gained by examining how the
CvM tests behave relative to the �2 test (Fig. 3). For the
random data, the two GOF tests are uncorrelated for
16-bin rank histograms constructed from both 60 cases
(Fig. 3a) and 540 cases (Fig. 3c), which means that the
individual samples with p values 0.05 differ from the
two tests in nearly random ways. However, the �2 test is
by definition insensitive for the data reordered into a U
shape, while the Watson statistic is clearly very sensi-
tive to this reordering for both the 60- (Fig. 3b) and
540-case samples (Fig. 3d). The �2 test p values are
clearly discrete for the small-sample (60 values) cases
(Figs. 3a and 3b), which is a result of both the small
sample size and the insensitivity to order: with only 60

FIG. 1. Examples of �2 and Cramér–von Mises family test results for a single, 60-element
dataset with different bin ordering. The y axis yields the number of elements in each bin, and
the x axis is the rank, with rank 1 on the left and rank 16 on the right. Tests that are particularly
sensitive to certain deviations from the uniform null distribution are in boldface. (a) Rank
histogram of uniformly distributed data with noise, (b) same data as in (a) but with the data
reordered to generate a U-shaped rank histogram, (c) same data as in (a) but with data
reordered to create a peaked rank histogram, and (d) same data as in (a) but reordered to
generate a sloping rank histogram.
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values, the number of different T-statistic values that
can be generated is significantly limited. The Watson
test p value rises as the �2 test p value approaches 1
(Figs. 3b and 3d). This is true for all of the CvM family
of tests, and indicates that as the �2 test p value ap-
proaches 1, the rank histogram approaches exact uni-
formity. Because the sample size used in the simula-
tions is not a multiple of the number of bins, such a
“perfect” rank histogram cannot occur within these
data. However, were all bins to contain the same num-
ber, the rank histogram itself is invariant under bin-
order permutations. The sensitivity of the Watson sta-

tistic to U-shaped distributions is demonstrated by how
high the �2 test p value may become before the Watson
test p value begins to increase (Figs. 3b and 3d). The
higher the �2 test p value at which the Watson p value
starts to rise, the more sensitive the Watson test statistic
is to the particular deviation from the null distribution.
Simulations that use sample sizes as large as 5000 and as
small as 30 show similar results.

4. Conclusions

The most common problems associated with en-
semble forecasting systems are underdispersion, over-

TABLE 2. Small-sample results. Bold values are associated with the most sensitive tests.

Random Reordered: U shaped Reordered: peak shaped Reordered: bias slope

�2 0.055 0.055 0.055 0.055
CvM 0.057 0.223 0.183 0.995
Watson 0.051 0.923 0.923 0.583
Anderson–Darling 0.057 0.451 0.325 0.994

FIG. 2. Same as in Fig. 1 but for a sample size of 540.

OCTOBER 2005 E L M O R E 793



dispersion, and bias. Rank histograms depict these
problems with either a U shape, a peaked center, or one
end of the rank histogram being higher than the other
(slope), respectively. The ubiquitous �2 test possesses
certain characteristics that may make it unsuitable for
assessing the quality of rank histograms derived from
ensemble forecasting systems. Specifically, the �2 test
statistic is order invariant, which means rank histo-
grams that clearly display a problem within the en-

semble forecasting system may go undetected using the
�2 test.

Better tests for the specific problems encountered
with ensemble forecasting systems are available from
the discrete form of the Cramér–von Mises family of
GOF tests. These tests are based on the Cramér–von
Mises, Watson, and Anderson–Darling statistics. Of
these three, the Watson test statistic is considerably
more sensitive to either U-shaped or peaked rank his-

TABLE 3. Large-sample results. Bold values are associated with the most sensitive tests.

Random Reordered: U shaped Reordered: peak shaped Reordered: bias slope

�2 0.055 0.055 0.055 0.055
CvM 0.042 0.228 0.223 0.994
Watson 0.052 0.911 0.911 0.580
Anderson–Darling 0.042 0.454 0.405 0.994

FIG. 3. Examples of the �2 test behavior compared to the Watson test behavior: (a) plot
showing the association between the �2 p value and the Watson p value for the random data
consisting of 60 values, (b) �2 p value and the Watson p value for the reordered into a U shape
for 60-sample data, (c) same as in (a) but for the 540-sample data, and (d) same as in (b) but
for the 540-sample reordered data.
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tograms than are the other two. The other two tests are
almost equally sensitive to a slope/bias within the rank
histograms. All of the CvM tests retain considerable
power for relatively small samples.

Like any statistical test, the CvM tests are not infal-
lible. Yet, better results will be obtained by using a
combination of either the Watson and CvM, or Watson
and Anderson–Darling tests for evaluating rank histo-
grams, instead of the �2 test. If the rank histogram in
question passes either combination of CvM tests at an
appropriate p value, then that rank histograms may be
considered statistically free from either U-shaped/
peaked or biased/sloped deficiencies.
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